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Quantum Field Theory of Polarization of Light by 
a Polarizer 

E. B. M a n o u k i a n  1'2 

Received October 3, 1995 

We develop a quantum field theory analysis of the polarization of light by a 
polarizer by analyzing the photon Green function with the appropriate boundary 
conditions. Inherent in the study is a time evolutionary study of the system. The 
photon Green function is obtained as a photon moves from an emitter to various 
detectors set up relative to the polarizer. Upon using a completeness relation of 
the polarization vectors of light, the amplitudes of the relevant processes are 
extracted in a fully field-theoretic treatment in terms of photons. 

1. INTRODUCTION 

We develop a quantum field theory treatment of the practical problem 
of polarization of light by a polarizer. The photon Green function is set up 
and solved in detail with the appropriate boundary conditions. The latter is 
solved by tracing the time evolution of the system as a photon moves from 
an emitter to various detectors set up relative to a polarizer. Upon using 
a completeness relation with respect to polarization vectors, the relevant 
amplitudes for photon detection are extracted, from which the intensities for 
the various processes are computed. In this investigation, we were much 
inspired by the fascinating, but nontechnical, treatment of light given by 
Feynman (1985) and the abundant literature (e.g., Kennedy et  al. ,  1980; 
Deutsch and Candelas, 1979; Schwinger et al., 1978; Balian and Duplantier, 
1977; see also Manoukian, 1987a,b, 1992, 1993) dealing with the role of a 
quantum mechanical particle in a typical everyday situation. As in all these 
investigations, the boundary surface, that is, the polarizer itself, is replaced 
by appropriate boundary conditions, as also done in classical physics, rather 
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than considering a quantum mechanical model for it as being made up of 
atoms and so on. 

2. T H E  P H O T O N  G R E E N  F U N C T I O N  

Upon using the definitions 

E i = F oi, 

F ~  = O~A ~ - O~A~ 

in Maxwell's equations 

V . E  = p, 

V - B  = O, 

we may write 

j i  

jo  
B i = ½e.ii*F j*, p = - -  ( I ) 

c 

(2) 

V × B = a o E +  J (3) 
C 

V x E =  - 0 o B  (4) 

avFt~i _ jo --  a i J i  
c ' ao (5) 

We work in the celebrated temporal gauge A ° = 0, to obtain from (5) 

[(_~2 + oo2)sij + a i f f ]AJ(x)  _ J i (x )  (6) 
c 

Upon taking the vacuum-expectation value of equation (6) (with j i  ~: O) and 
defining the photon Green function as the solution of 

[(__~2 ..~ 002)~ik @ oiok]DJk(x' ,  X) : ~iJ~(X', X) (7) 

with appropriate boundary conditions to be spelled out, or of 

[(__~12 "1- a° '2)~ ik --I- o t io tk]okJ(x  ', X) -~" ~iJ~(xt,  X) (8) 

we have 

( A i ( x , ) )  = I f ( dx )  DiJ(x ',  x )JJ(x)(O+ 10_) (9) 
c J 

The vacuum-to-vacuum transition amplitude (0÷10_) has the well-known 
form (see, e.g., Manoukian, 1986a) 
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(lO) 

In particular, the expectation value of  the electric field components Ei(x ') for 
j i  :# 0 are given by 

(Ei(x,)) = lc f (dx) b'°Di.i(x', x)J-i(x)(O+I 0_) (11) 

The polarizer will be set up to constitute the y-z  plane, through the 
origin, such that it polarizes light in a direction perpendicular to the y axis, 
that is, it "eats up" the y component of  the electric field at x = 0. Here x ¢ 
= (x °, x I, x 2, x 3) = (x °, x, y, z). Hence the appropriate boundary conditions 
are (EZ(x')) = 0 at x'  = 0 and (E~(x')), a = 1, 3, are continuous at x'  = 0. 
In terms of  the photon Green function DO(x ', x) the boundary conditions are 

D2J(x ', x)t~,=0 = 0 (12) 

D'~J(x ', x)Ix,=-0 = D'q(x ', x)Ix,=+0 (13) 

(x' = x ' l ) . T h e  external current ji(x) will be wi l ton  as (e.g., Schwinge~ 
1970;Manou~an ,  1986b) 

Ji(x) = J~(x) + J'z(x) + J~3(x) (14) 

where the currents J~(x) and Ji3(x) are switched on after the current J~(x) is 
switched off. J~(x) will be identified with the emitter, and Ji2(x) and J~(x) 
with detectors. The supports in space of  Ji(x) and J~2(x) will be taken to be 
in the region x - x I < 0 and that of  Ji3(x) in the region x -- x ~ > 0. The 
J~(x) detects a photon that would pass through the polarizer and is polarized, 
and J~(x) detects a photon which does not pass through the polarizer. 

The various processes of  interest will be obtained from (Manoukian, 
1986b) 

Ji3(x')DiJ (x', x)J~(x) and Ji~(x ')DiJ (x', x)J~(x) 

(see Section 4). Accordingly, the Green function will be eventually sand- 
wiched between the currents in the above manner. This will allow us to fix 
x to be in the region x < 0 in DO(x ', x), since the support in space of  the 
current Ji(x) lies in this region. We next consider the regions x' < 0 and x'  
> 0, respectively. 
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2.1. The  x '  < 0 Region 

Here we are interested in J~(x')D°(x ', x)J-{(x). For x'  < 0, we may write 

DiJ(x ', x) = Did(x ', x) + D~(x', x) (15) 

where D~(x', x) is a particular solution of (7) and (8), and D~(x', x) is a 
solution of the homogeneous equation corresponding to those of (7) and (8). 
That is, 

[ ( -8  '2 + (0'°)~)~ ik + O'iO'qD~(x ', x) = 0 (16) 

This in turn gives the equivalent equations 

( - 0  '2 + (O'°)2)D°_(x', x) = 0 (17) 

( - - 0  2 + O°2)Dq-(x ', x) = 0 (18) 

3'iD~(x ', x) = O, OJD~(x', x) = 0 (19) 

We solve for the Green function DO(x ', x) for the causal relation x '° > x °. 
The particular solution D~d(x ', x) to (7) is well known: 

I d2K I d q e  iK'{x~'-x'') 
Oid(x', x) = i ~ 2rr 2k 

× eiqtx'-x)e-iktx'°-x°)(~iJ __ kikJ'~ k2 ] (20) \ 

where Xll = (Y, Z), k = (q, K), and k = (q2 + K2)112. To solve for D~(x', 
x) we write 

f d2K f dk° f dq' dq , . . . .  D~(x', x) = ~ "~  ~ e'K'(xll-xll)e'qx e -'qx 

× e-il&*'°-~°)D°_(q', q, K, k °) 

where (18) gives 

(q2 + K z _ kO2)DO(q,, q, K) = 0 

(21) 

(22) 

With x '° > x °, the emitter J{(x) emits a photon with a positive energy k ° > 
0 to be detected by J~(x'). That is, (22) implies that we may write 

Tr 
D~(q', q, K, k °) = ~ 8(k ° - k)F~(q', q, K) (23) 

On the other hand, (17) implies from (23) that 
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(q'Z + K z - (K 2 + q2))F~(q', q, K) = 0 (24) 

Here the emitter J](x) emits a photon with the first component q of its 
momentum positive (q > 0) if it is to reach the polarizer. If the photon does 
not pass through the polarizer, then (after reflecting off) it is detected by 
J~(x'), having the first component q' of  its momentum of opposite sign q' 
< 0. That is, from (24) and (22) we have 

FiL(q ', q, K) = i~(q' + q)G~(q, K) (25) 

All told, this gives 

I d 2 K f d q g  ~<~x~,-x,,) 
D{(x', x) = i ~ 2rr 2k 

X e-iqC~'+*~e-ik<x'°-~G~(q, K) (26) 

where k = (q2 + K2)1/2 as before. 

2.2. The  x' > 0 Reg ion  

Here we are interested in the expression for J~(x')DO(x ', x)J~(x). For x' 
> 0, the Green function DO(x ', x) = D°+(x ', x) satisfies the homogeneous 
differential equations corresponding to (7), (8). That is, 

[ ( - 0  '2 + (0'°)2~ ik + O'i3'qD~(x ', x) = 0 (27) 

[ ( - 0 2  + 0°2)~ it: + oiOk]D)k+(x', x) = 0 (28) 

which lead to 

( - 0  'z + (O'°)2)D~(x ', x) = 0 (29) 

( - O  z + a°a)D~(x ', x) = 0 (30) 

a'iD~(x ', x) = O, OiD~(x ', x) = 0 (31) 

A similar analysis as for D~(x', x), with the basic difference that q' has to 
be positive (q' > 0) to reach the J~(x') detector, then gives 

f d2K f d q e  iK'~x''-x'') DiY(x ' ,x)  = D~(x',x) = i ~ 2rr 2k 

X eiq°:'-X)e-i'~cr'°-X°)GiJ+(q, K) (32) 

where k = (q2 + K2)lr2. 
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3. S O L U T I O N  OF T H E  G R E E N  FUNCTIONS 

The boundary condition in (13) gives, from (15), (20), (26), and (32), 

k2 ] + G~, a = 1, 3 (33) 

k = (q, K), k I = q, k 2 = K '2, k 3 = K3; and the boundary condition in (12) gives 

k2 ] + G~ (34) 

The latter, in particular, implies 

k2 ] (35) 

The transversality conditions in (19) give, respectively, 

- q G ~  + K2G~ + K3G3j " = 0 (36) 

q G )  + K2G~ + K3G~ = 0 (37) 

which, in particular, imply that 

G~ = 0 (38) 

On the other hand, the transversality conditions in (31), 

kiG~ = k"G'~ = 0 (39) 

where we have used the fact that G~ = 0 in (34), imply, upon multiplying 
(33) by k", a = 1, 3, that 

The latter gives 

G~ =-K~3 8 " J -  = ~ 5  82j_  

k j (K2) 2 + (K3) 2 
k 2 K 3 

Finally, (33) gives, from (38) and (41), 

Gig " = (~lj qkJ~ --@ 

K 2 
a3~ = g3j + -~5 g2j 

(41) 

(42) 

(43) 
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The so-called scattering part GiL(x', x) of the photon Green function for x' 
< 0 is then defined in (26) with G~ given in (38), (35), and (41) for i = t, 
2, 3, respectively. This expression is understood to be sandwiched as in 
J~(x')D~(x', x)J~(x). Similarly, the scattering part G~(x', x) of the photon 
Green function for x' > 0 is defined in (32) with G~ given in (42), (34), 
(43) for i = 1, 2, 3, respectively. This expression will be sandwiched as in 
J~(x')Di{(x ', x)J](x). 

4. T R A N S I T I O N  A M P L I T U D E S  

The transition amplitude for the process where the photon goes through 
the polarizer will be extracted from the expression Ji3GiJ+J~ appearing as part 
of the exponent of the vacuum-to-vacuum transition amplitude in (10). That 
is, using (32), (42), (34), and (43), it is extracted from 

l ' d Z K I d q  i ~ ~k J~'(q' K)G~(q, K)iJ~(q, K) (44) 

Without loss of  generality, we consider a photon initially with momentum 

k = (q, 0, g 3) (45) 

emitted from J1, and introduce two mutually orthonormal polarization vectors 
el(0), e2(0), which in turn are perpendicular to k, with el(0) making an angle 
0 with the z axis. Thus we may choose 

et(0) = - cos 0, sin 0, ~ cos 0 (46) 

where we have used the fact that I kl 2 = (KB) 2 + q2. The polarization vector 
e2(0) may be written as 

e2(0) = ( -~-~  sin 0, - c o s  0, q sin 0)  (47) 

We have the completeness relation (i, j = 1, 2, 3) 

lk j 
ekeJ + i k12 - B/j (48) 

with a sum over h = 1, 2 understood. We also introduce polarization vectors 
to describe a photon detected by ,/3: 

el  = - , 0 ,  

e ~ = ( O ,  1 , 0 )  

(49) 

(50) 
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satisfying also the completeness relation 

kik j 
,, , _ ~ij (51) eae~, s + lkl 2 

Since kiG~ = 0 and G~i+k i = 0, the integrand in (44) may be rewritten as 

K)exexG+e~e~Jl(q, K) i (52) k j ~ . ( q  ' ,t ,i ij j , 

That is, the amplitude that a photon (emitted by J ,) ,  with momentum k in 
(45), and polarization el(0) making an angle 0 with the z axis, passes through 
the polarizer (detected by J3) and ends up with polarization e; is (Manou- 
kian, 1986b) 

e'liGiJ+e~(O) = cos 0 (53) 

On the other hand, the amplitude that the photon ends up polarized along 
the y axis is explicitly 

e~'GU+eJ,(O) = 0 (54) 

as expected. That is, the probability that the photon passes through the 
polarizer is, from (53), cos20, which is the classic result. 

Now consider the situation where the initial photon is nonpolarized. In 
this case we also compute explicitly 

e'liGiJ+eJ2_(O) = sin 0 (55) 

e'iGiJ+e~(O) = 0 (56) 

in addition to (53), (54). Then we have to average over the two probabilities 
obtained from (53) and (55). That is, the probability that a nonpolarized 
photon passes through the polarizer is 

- ~  (57) "(c°sz0 + sin20) 2 

The transition amplitude for the process where a photon does not pass 
through the polarizer is extracted from fz*GiJ_JJ I. That is, it is obtained from 

I d2K 
~ -~k iJ~*(-q, K)G~iJJ~(q, K) (58) 

The initial momentum of a photon is taken as in (45) with R e = 0. From 
(58) the final momentum of a nontransmitted (reflected!) photon (detected 
by J2) is 

k" = ( - q ,  0, K 3) (59) 

We introduce polarization vectors to describe a photon detected by ,12: 
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e~ = (0, 1, 0) (61) 

satisfying the completeness relation 

k,,ik,,j 
,i "" -- ~ij (62) 

exe~ ~ + ik12 

We note that I( ' iG ij _ = 0. The amplitude that a photon (emitted by Jl), with 
momentum k in (45), polarization el(0) in (46) making an angle 0 with the 
z axis, does n o t  pass the polarizer (reflected!) and ends up with polarization 
e7 is 

e '~iG°e~(O) = 0 (63) 

On the other hand, the amplitude for the photon not being transmitted through 
the polarizer and being polarized along the y axis is explicitly 

e~iGiJ_eJi(O) = - s in  0 (64) 

That is, the nontransmitted (reflected) photon must be polarized along the y 
axis! The probability that the photon does not pass through the polarizer is, 
from (64), the classic result sin20. 

Finally, suppose that the initial photon is nonpolarized. In addition to 
(63), (64) we also compute 

e'~iG~e~(O) = 0 (65) 

e'~iGiJ_e~(O) = - c o s  0 (66) 

That is, the probability that a nonpolarized photon does n o t  pass through the 
polarizer (reflected) is, from (64), (65), 

½(sin20 + cos20) - ½ (67) 
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